研究警告:到2026年,AI训练数据可能告急

2023年11月09日 09:11浏览次数:9654次编辑:圣灵科技-小圣

随着人工智能(AI)达到巅峰,研究人员警告称,AI行业可能会面临训练数据告急的问题,这是强大AI系统的燃料。这可能会减缓AI模型的增长,特别是大型语言模型,并可能改变AI革命的轨迹。

为了训练强大、准确和高质量的AI算法,我们需要大量数据。例如,ChatGPT是基于570千兆字节的文本数据(大约3000亿字)进行训练的。类似地,stable diffusion算法(驱动许多AI图像生成应用,如DALL-E、Lensa和Midjourney)是基于包含58亿图像-文本对的LIAON-5B数据集进行训练的。如果算法的训练数据不足,将会产生不准确或低质量的输出。因此,训练数据的质量同样重要。低质量数据,如社交媒体帖子或模糊照片,容易获取,但不足以训练高性能的AI模型。

AI行业一直在不断扩大数据集的规模,这就是为什么我们现在拥有高性能模型,如ChatGPT或DALL-E3。与此同时,研究显示,用于训练AI的在线数据库增长速度远远慢于AI所需的数据集。在去年发表的一篇论文中,一组研究人员预测,如果当前的AI训练趋势继续下去,我们将在2026年之前用尽高质量文本数据,而低质量的语言数据将在2030年至2050年之间耗尽,低质量的图像数据将在2030年至2060年之间告急。尽管AI有望在未来几年内更有效地利用已有数据来训练高性能AI系统,从而降低数据需求,但数据短缺问题仍需解决。

如何解决数据短缺问题?

虽然上述问题可能让一些AI爱好者感到担忧,但情况可能没有看上去那么糟糕。关于AI模型未来的发展,还有许多未知因素,但有一些方法可以解决数据短缺的风险。一种机会是让AI开发人员改进算法,使其更有效地利用已有数据。未来几年内,他们有望能够使用更少的数据和可能更少的计算能力来训练高性能AI系统,这也将有助于减少AI的碳足迹。

另一种选择是使用AI来生成合成数据以训练系统。换句话说,开发人员可以简单地生成他们需要的数据,以适应其特定的AI模型。已经有几个项目正在使用合成内容,通常是从数据生成服务中获取的,这将在未来变得更加普遍。

开发人员还在寻找在线空间以外的内容,如大型出版商和离线存储库中的内容。想象一下在互联网之前出版的数百万篇文本,如果以数字形式提供,它们可能为AI项目提供新的数据来源。例如,新闻集团(News Corp)是全球最大的新闻内容所有者之一,最近表示正在与AI开发人员洽谈内容交易。这些交易将迫使AI公司为训练数据付费,而他们迄今大多免费从互联网上获取数据。内容创作者已经抗议允许未经授权使用其内容来训练AI模型,一些公司如微软、OpenAI和Stability AI已被起诉。获得对其工作的报酬可能有助于恢复创意工作者和AI公司之间存在的一些权力失衡。

原文来源:站长之家

关注圣灵科技公众号,免费获得更多企业AI建设方案!

圣灵科技公众号二维码.jpg

友情链接: 百度腾讯抖音小红书今日头条企业盟重庆互联网微星球建筑劳务网云人脉圈全民创收网全民财多多圣灵建站系统圣灵溯源系统圣灵客服系统圣灵人事系统创投100圣灵短视频圣灵传媒圣灵商学院重庆网海南网贵州网云南网广西网甘肃网宁夏网山西网陕西网山东网黑龙江网重庆百科web专家U站网青海网新疆网西藏网安徽网福建网湖北网湖南网四川网河北网河南网吉林网辽宁网AI应用工厂

Copyright @ 2004-2023 cqslkj.cn All Right Reserved @重庆市渝中区圣灵科技信息有限公司 版权所有

渝ICP备16004600号-5 渝公网安备 50010802001399号 电子营业执照

联系方式
023-62897001

77981978
023-62897001
81623110
62891977
微信公众号